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Abstract. The behavior of microgels near surfaces and their adsorption is studied by simple scaling theory.
Two different types of microgels can be studied, i.e., fractal type microgels and randomly crosslinked
polymer chains. In the first case the gel can be described mainly by introducing a spectral dimension. The
second type requires more attention and uses the number of crosslinks as parameter. The main result is
that soft gels with weakly coupled crosslinks and a low number of crosslinks adsorb much better than hard
gels, with many crosslinks. Similar results for fractal gels and branched polymer are presented. Fractal
gels with low connectivity adsorb easier than gels with a large connectivity dimension. We discuss also
consequences on surface protection by microgels.

PACS. 36.20.Ey Conformation (statistics and dynamics) – 82.70.Gg Gels and sols

1 Introduction

The theory of polymers near surfaces is a very important
subject for theoretical investigation. The main reason is
the very broad and deep theoretical research possible for
these types of systems. Modern theories have been devel-
oped and brought to a very high standard [1]. On the
other hand there is a large demand on practical interest
on studying polymers near surfaces. One of them is sur-
face protection. The theory on polymer brushes [2] is a
typical example of these type of applications. Polymers
are attached to surfaces to protect the surface from fur-
ther adsorption of, e.g., biological active molecules such
as proteins. These molecules need to be pretended to from
all kind of surface interactions in order to save their bi-
ological function [3]. The (technical) problem with poly-
mer brushes is, that a large surface coverage is needed
to protect the surface in a most effective way. Polymers
attached chemically or physically at one end at the sur-
face form brushes, i.e., the chains are extended and the
brush height h follows a scaling law h ' σ−1/3N (in good
solvent), where σ is the area per chain an is thus related
to the grafting density. N the degree of polymerization of
the chains. The problem is to set-up a small value of σ,
or, correspondingly a large grafting density. For low values
of the grafting density the chains behave as “mushrooms”
and the surface protection is incomplete.

In earlier papers it has been shown by one of us, that
the use of branched chains in much more effective [4–6].
Chains, polymers and polymeric fractals with a larger con-
nectivity seem to be more appropriate to protect surfaces
more effectively. Indeed due to their connectivity their oc-
cupied area is larger and it turns out that these systems
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behave more like single chain fractals. Typical many body
effects, such as occur in conventional polymer brushes do
not play a significant role.

In the present paper we suggest a different route of
surface protection by using microgels and branched struc-
ture. Microgels had become an important tool in designing
polymeric nanostructures. These systems can be synthe-
sized [7–10] with different structures. Indeed the structure
of these microgels can range from a fractal state, i.e., a
branched self-similar polymer with a large connectivity,
up to almost hard and highly crosslinked spheres. Such
systems are well designed to study the transition form
polymer to colloid behavior by variation of the structure
and the crosslinking state.

We have shown earlier [11,12], that fractal polymers
and gels can interpenetrates each other and screen ex-
cluded volume forces, wherever their connectivity is low.
In terms of the spectral dimension this is the case, when
it is lower than a critical value, i.e. Dc = 6/5. Thus frac-
tals with lower spectral dimensions screen their excluded
volume, whereas polymeric fractals with larger spectral
dimension saturate. Then they form soft balls, which can-
not interpenetrate each other and are well separated from
each other [11,12]. This state has an analogue in the case
of linear polymers. Polymer melts in two dimensions cor-
respond to a saturated state. The individual chains are
separated from each other and form on average disks on a
hexagonal lattice [13].

For surface protection in three dimensions it would
thus be more effective to use fractal microgels with a large
connectivity. Then the surface coverage is ruled by the sin-
gle gel behavior. Alternatively crosslinked gels can be used
to have the same effect. Sufficiently crosslinked gels can-
not interpenetrate each other. The adsorption behavior
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can be studied then by the single gel adsorption. The sig-
nificant parameters are either the connectivity (spectral
dimension D) or the crosslink number M . In the follow-
ing we emphasize mainly on the crosslinked gels rather on
the self similar connected polymeric fractals. Nevertheless
we will consider both cases below.

The paper is organized as follows. In Section 2 we intro-
duce the model of self crosslinked polymer chains, which
form the microgels. In Section 3 we repeat briefly the
scaling behavior of ideal microgels before we consider in
Section 4 the effects of excluded volume in the bulk. Sec-
tions 5 and 6 treat the adsorption behavior of the gels
close to attracting walls using simple scaling arguments. In
Section 5 we will also make some remarks on fractal type
gels.

2 The model

Flexible interacting macromolecule modeled usually by
the Edwards Hamiltonian in three dimensional space. The
Edwards Hamiltonian consists of two parts, i.e., the Gaus-
sian connectivity of monomers

HW =
3

a2

N∑
i=1

(Ri −Ri−1)2

and the self avoidance between monomers

HI = v

N∑
0≤i≤j

δ(Ri −Rj).

Thereby v > 0 is the excluded volume of the monomers,
N the degree of polymerization, and a the Kuhn length.
The chain configurations are determined by monomer co-
ordinates Ri, where i labels all monomers 1 ≤ i ≤ N . The
Edwards Hamiltonian is sufficient to describe a free self
avoiding walk chain. To study the properties of a microgel
crosslinks have to be introduced. The most obvious statis-
tical representation of a microgel is a self crosslinked single
chain. Such a situation has been studied many years ago
by the Manchester group in three papers [14]. The static
properties have been computed by variational techniques.
In this paper we choose a different route. Let us there-
fore consider a microgel as a self crosslinked polymer of
roughly spherical structure, which can be visualized as
given in Figure 1.

In this paper we want to describe the crosslinks such
that a continuous transition between the free chain and
the fully crosslinked state can be represented in the same
model. This has been motivated by our earlier work,
where soft crosslinks have been introduced. The method
of using soft crosslinks is able to interpolate from the
free chain to the hard microgel. The state in between is
a new kind of branched chain, whose scaling properties
have been already described [15–18]. To be more precise
let us introduce M permanently crosslinked monomers,
where each of them is characterized by pair of randomly

Fig. 1. A self crosslinked chain forming a microgel. The
crosslinks are represented by distance constraints. Two seg-
ments are held a distance ε apart. The hard microgel is given
by ε→ 0.

chosen monomer coordinates ie, je that form a perma-
nent crosslink. In fact, the whole set of crosslinks C =
{ie, je}Me=1 determine the random connectivity of the mi-
cro network. These definitions and proposals allow us to
formulate the partition function of the microgel, i.e.,

Z(C) =

∫
V

N∏
i=0

dRie
−(HW+HI)

M∏
e=1

δ(Rie −Rje).

The partition function describes the Gaussian network
with self avoiding interactions, and takes into account
the total connectivity of the certain crosslink config-
uration C. If the delta constraint for the permanent
crosslinks is represented by a soft Gaussian function, i.e.,
δ(x) = limε→0(const./ε) exp(−(3/ε2)x2), the problem can
be solved exactly. Thus we model the δ-function by Gaus-
sian distribution with width ε in limit ε→ 0 and formulate
the Hamiltonian of the crosslinked chain by

HW =
3

a2

N∑
i=1

(Ri −Ri−1)2 +
3

ε2

N∑
e=1

(Rie −Rje)
2

+v
M∑

0≤i≤j

δ(Ri −Rj). (1)

3 Microgels without interactions

Although we have shown in previous publications that the
partition function can be solved for any value of ε exactly
it is useful to rederive the results previously by the use of
scaling arguments. These consideration will reproduce the
exact results apart from prefactors. To do so it is useful to
recall that the classical random walk contains two elastic
contributions, one for stretching and one for compression.

The addition of both yield a free energy F ∼ R2

a2N
+ a2N

R2

and by minimization the size of Gaussian chainR ' aN1/2

is recovered. Let us shortly repeat the results for later use.
For the case of soft crosslinks, i.e., whenever ε is within
the range a2 � ε2 � a2NM we have for the relevant part
of Flory free energy

F '
Na2

R2
+

1

ε2
MR2 (2)
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and minimization yields the branched polymer regime

R ' a
( ε
a

)1/2
(
N

M

)1/4

· (3)

The appearance of the typical branched polymer exponent
ν = 1/4 is not surprising in the ideal case, since the con-
straint can be visualized as springs. Then the connectivity
is changed. The branched polymer regime in the range of
a � ε � a

√
NM was confirmed also by the exact solu-

tion of the crosslinked chain problem, see [16]. Moreover
it agrees also with the corresponding branched polymer
[18].

In the case of hard crosslinks, whenever ε ' 0 or a the
crosslink term must be differently estimated. To do so the
crosslink term can be estimated by the size of the random
walk through crosslinks. Then the relevant part of Flory
free energy is then given by

F '
a2N

R2
+M

R2

a2
(
N
M

) · (4)

Minimization of the free energy provides the size of the
microgel by

R ' a

(
N

M

)1/2

(5)

as also given by the exact results [16]. Formally the latter
result can be found from a special choice for ε from the cor-
responding result for soft gels (3), but note that the way
of estimating the free energy contribution of the crosslinks
is estimated very differently. Thus there can be a differ-
ent prefactor, which is not accessible by scaling. The ex-
act values for the radius of gyration of the non-interacting
but crosslinked chains have been computed exactly in [16],
where the numerical prefactors can be found.

4 Microgels with excluded volume

Although we have been able to compute the size of the mi-
crogel exactly whenever the interactions are not present
the self avoiding case appears very difficult. The only pos-
sibility for the problem at this stage is to use Flory es-
timates for size R. Let us first consider the case of soft
crosslinks. The distance constraint that forces two ar-
bitrarily chosen polymer segments together shrinks the
chain. The shrinkage costs entropy penalty which bal-
ances with the distance constraint. The use of the pseudo-
potentials allows us, however, to cast this in a simple Flory
free energy to

F 'M
R2

ε2
+ a3N

2

R3
(6)

and minimization yields the size of the swollen soft micro-
gel

R ' a
( ε
a

)2/5
(
N2

M

)1/5

· (7)

The result is very intriguing. Although the Gaussian chain
size scales the same way as the branched polymer, the
swelling behavior produces another excluded volume expo-
nent, resulting in a different swelling behavior as branched
chains. In the latter case the swollen branched chain is
characterized by R ∝ N1/2. On the other hand it can
also be seen that the pure scaling in terms of the variable
N/M always present in the Gaussian case is destroyed.
This becomes clear, since the excluded volume introduces
interactions.

A similar estimate of the size can be carried out in the
case of hard crosslinks. Here the elastic term stemming
from the pseudo-crosslink potential can be estimated the
same way as in the case of non interacting networks, which
was given by a random walk through the crosslinks. The
total excluded volume energy remain the same, because it
depends only on the total amount of monomers and not
on the special connectivity. Then minimization of the free
energy

F 'M
R2

a2
(
N
M

) + a3N
2

R3
(8)

yields swollen c*-micro gels of size

R ' aM1/5

(
N

M

)3/5

· (9)

The size might appear small compared to what is expected
intuitively. This comes from the fact that the crosslinks
has been chosen totally randomly. In many theories of
macroscopic networks the choice of the crosslink pairs is
guided by the conformation of the excluded – or random
walk chain, i.e., the often terminated “zeroth replica”
[20]. For completeness we mention that the number of
crosslinks in excluded volume gels cannot be arbitrarily
large. A natural limit of the crosslink number is given by
the condition that the size must be larger than a fully col-
lapsed ball of space filling density, i.e. R ≥ aN1/3. The
latter condition yields the upper limit for the number of
crosslinks to be M ≤ N2/3.

5 Adsorption behavior of self similar
microgels, general remarks

Let us first study the adsorption of ideal microgels near a
flat surface by naive scaling arguments. To do so, we re-
peat the scaling idea of de Gennes for arbitrarily flexible
objects of arbitrary connectivity, but selfsimilarly linked.
The connectivity of of such Gaussian fractal networks can
be described by the spectral dimension D. The total num-
ber of monomers is therefore N = mD, and their ideal size
is given by R0 = am(2−D)/2D = aN1/df , yielding a fractal
dimension of df = 2D/(2−D). Thus m counts the num-
ber of monomers through a linear dimension through the
fractal object. This way of description includes the well-
known cases of linear chains for D = 1 and for randomly
branched polymers, i.e., D = 4/3.
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A simple way of looking at the adsorption conditions is
to compare the free energy penalty of confinement of the
Gaussian structure near the wall with the gain of energy
by adsorbing a certain number of monomers.

F ' Fconf − naw. (10)

For Gaussian chains the confinement is simply given by
Fconf ∼ (R0/H)2. Here we have used the symbol H for
the height of adsorbed layer, na is the number of adsorbed
monomers, and w is the gain of energy per kBT . Following
de Gennes book [19] we can reproduce the result given
there for the linear ideal chain.

To do so we must first estimate the number of adsorbed
monomers at the surface, we assume that the surface is
penetrable for a moment. This yields immediately

na ' aR
2 m

D

R2H
∼ N

( a
H

)
· (11)

The main problem is to estimate the confinement free
energy for Gaussian fractals with a larger connectivity
compared to the linear chain. This is definitely not just
the inverse of the Gaussian free energy of stretching, i.e.,
Fstretch = R2/am(2−D), because upon stretching only the
monomers in the shortest path are taking part on the de-
formation, whereas upon confinement the total number of
monomers are concerned. The corresponding confinement
free energy must then be of the form

Fconf
∼=

N

Hdf
· (12)

This result contains the special case of linear chains,
D = 1, df = 2, and the latter agrees with the classical
confinement free energy.

For the ideal Gaussian structures the height of the ad-
sorbed layer scales as

H ' a

(
1

w

)1/(df−1)

· (13)

The same result can be found by a blob argument. For
selfsimilarly branched polymers a blob model can be
used [5]. The manifold is confined to a height H. In-
side blobs of diameter H the branched chain is Gaus-
sian, i.e., H ' g(2−D)/2Da, where g is the number of
monomers inside the blob. Thus the number of blobs is
given by nb ' mD/g = N/H2D/(2−D). The confinement
free energy is proportional to the number of blobs, i.e.,
Fconf ∼ nb. Employing the same scaling argument as
above yields immediately

H ∝ a(1/w)(2−D)/(3D−2)

which agrees with the above result, equation (13).
In any case, the above arguments only yield the behav-

ior of ideal chains near the surface. For excluded volume
chains and excluded volume manifolds the Gaussian elas-
tic entropy penalty must be replaced by the confinement
energy. To do so, the manifold can be put between two

plates of distance H. This procedure yields similar results
along to those derived in de Gennes book [19].

To do so, the extension of the manifold between
two parallel plates must be computed. It is given by
R‖ ' H(a/H)5/4N (2+D)/4D [5]. This result is consistent
with the linear SAW chain between two plates. For D = 1
the two dimensional chain of blobs is recovered. The con-
finement free energy can be only a function of the ration
of the size of the manifold and the distance between the
plates, i.e., (R/H), where R is the size of the self avoiding
manifold R ' aN (2+D)/5D. The confinement free energy
is then easily found from the condition that the free en-
ergy must be an extensive quantity. Thus it must scale as
Fconf ∝ N , which yields

Fconf ' kT
( a
H

)5D/(2+D)

N. (14)

Replacing the elastic free energy in the scaling argument
above by the confinement energy, yields the physically sen-
sible result

H ∝ aw−
2+D
4D−2 (15)

which is now independent of the molecular weight for any
manifold. Moreover for D = 1 the linear chain result is
recovered. Moreover the result bears an interesting point
in it: the parameter w is the gain of energy at adsorp-
tion of one segment per thermal energy kT . Thus it is
physically reasonable that this parameter is sufficiently
small, i.e., w < 1. Thus a significant change of the be-
havior can be expected if the exponent in H is larger and
smaller than one. It is interesting to note that this hap-
pens at D = 4/3 which is close to the spectral dimension
of randomly branched chains or accidentally for percola-
tion clusters. Thus randomly connected manifolds of large
connectivity adsorb weaker than objects of low connec-
tivity, as linear chains. This is physically intuitively clear
since the number of accessible sites become smaller for in-
creasing connectivity. In the following section we will use
the same strategy to discuss the adsorption behavior of
microgels.

6 Confinement energy for microgels with
excluded volume

As we have seen in the last paragraph on the previous sec-
tion we have to construct the free energy of confinement.
We use the same concept of gels between two plates for
energy cost of squeezing. We have seen in the first two
sections that we can distinguish between soft and hard
microgels by the value of the parameter ε. For both cases
we expect physically different behavior.

Let us first consider soft gels between plates. To do so
we have to determine the size of the gel parallel to the
plates. The relevant parts of the free energy is given by

F 'M
R2
‖

ε2
+ a3 N2

HR2
‖

(16)
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where we have argued that the elastic confinement and the
“anisotropic” excluded volume term balance each other.
This yields immediately

R‖ ' H

(
ε2a3

H5

)1/4(
N2

M

)1/4

(17)

and the corresponding confinement energy to

Fconf '
N
√
M

ε

a

( a
H

)5/2

· (18)

Note that the confinement free energy is determined by
the fact that it must be proportional to the total number
of monomers, since the free energy is extensive.

The same procedure can be employed for hard gels.
The relevant free energy takes a similar form as before,
apart from the elastic part of the energy.

F '
M2R2

‖

a2N
+ a3 N2

HR2
‖

· (19)

The size of the gel parallel to the plates is given for com-
pleteness. It scales as R‖ ' H(a/H)3/4(N3/M2)1/4. To
find the confinement free energy the same argument yields

Fconf '
( a
H

)5/3 N

M2/3
· (20)

An important observation is that forM = 1 (no crosslink)
linear chain is recovered.

7 Adsorption behavior

Finally we are in the position to discuss the adsorption
behavior of the gels. To begin with, we employ the same
scaling arguments as given in the case of self-similar poly-
meric fractal. Thus we have to consider the competition
between confinement, or the entropy penalty of confine-
ment and the energy gain by adsorption. This results in a
total free energy of the general form

F ' Fconf − naw. (21)

We just summarize the results to be brief. First for soft
gels we find

H ' aw−2/3
( ε
a

)2/3

M−1/3. (22)

Similarly for hard gels

H ' aw−3/2M−1. (23)

Note that the latter equation contains the free chain result
for M = 1, i.e., if no crosslinks are present. We see that
in both cases the height of the adsorbed layer depends on
the number of crosslinks in a significant and characteris-
tic way. The results are in accordance with the physical
intuition. The soft microgels adsorb more easily, because
these objects are more flexible. This is also shown by the
different exponents of the interaction energy w.

8 Summary and conclusion

With use of Flory-Approximation we had investigated be-
havior of microgels. The complexity of the distribution
function of the non interacting network prevented us to
use more refined methods, as they are well known in the
case of linear polymer chains. Nevertheless we got results
which are reasonable and could be checked by experimen-
tal methods, at least in their tendency. The cases worked
out here have been relevant for penetrable surfaces, i.e.,
interfaces. A direct comparison to hard surfaces is not pos-
sible, since the number of monomers close to the surface
cannot be determined by equation (11). The case of linear
chains in half space has been studied in detail, see e.g. [1]
for a general reference. Crossover exponents and new crit-
ical points determine the physics. In the present case of
microgels and polymeric manifolds a similar treatment ap-
pears very difficult, since the “bare propagator” has a very
complicated structure, although it is exactly known [15,
16]. Nevertheless we expect that the principal statements
can be compared at least qualitatively with experiments.

To study the adsorption behavior we first had to cal-
culate the size of the microgel in solution. This has been
carried out by employing the Flory arguments. The ba-
sis for the reliability of the result has been their agree-
ment with the comparison of exact calculations without
excluded volume in bulk. Then generalization opened the
determination of sizes of microgels with excluded volume
interaction in bulk systems and near adsorbing flat sur-
faces. Moreover we made straightforward generalizations
to fractal type microgels, which could be described by the
spectral dimension.

The results show a transition from polymeric type of
adsorption behavior for soft microgels, i.e., with small
number of crosslinks, or alternatively low spectral dimen-
sion, to colloidal adsorption, whenever the crosslink num-
ber is large and their coupling is strong.

We have seen that the results have been presented from
considerations on single gels. This has also experimental
interest on surface protection. A layer of adsorbed gels
of height H at a surface is a single gel problem. Unlike
linear polymer chains the gels can no longer interpenetrate
each other. Thus microgels and branched polymers appear
more effective in surface protection.

Another interesting question is also the interplay be-
tween vulcanization and adsorption. In the case we stud-
ied so far, we had assumed preformed gels and fractals
which had then brought to the interacting surfaces. The
other case, i.e., the vulcanization in presence of interacting
walls would lead to new types of gels with new structures
which depend on the strength of the surface – monomer
interaction [21,22].
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attention sur une méthode élégante d’obtention du “blob”, qui
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8. M. Antonietti, K.J. Fölsch, H. Sillescu, T. Pakula, Macro-

mol. 22, 2812 (1989).
9. M. Antonietti, W. Bremser, K.J. Fölsch, H. Sillescu,
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